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Abstract
This review summarizes recent evidence that prenatal exposure to diverse environmental
chemicals dysregulates the fetal epigenome, with potential consequences for subsequent
developmental disorders and disease manifesting in childhood, over the lifecourse, or even
transgenerationally. The primordial germ cells, embryo, and fetus are highly susceptible to
epigenetic dysregulation by environmental chemicals, which can thereby exert multiple adverse
effects. The data reviewed here on environmental contaminants have potential implications for
risk assessment although more data are needed on individual susceptibility to epigenetic
alterations and their persistence before this information can be used in formal risk assessments.
The findings discussed indicate that identification of environmental chemicals that dysregulate the
prenatal epigenome should be a priority in health research and disease prevention.
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1. Introduction
Following a brief summary of the role of epigenetics in early development and disease, this
review focuses on the evidence that the prenatal/fetal period is highly susceptible to
epigenomic dysregulation with implications for health, both lifelong and transgenerationally.
We then offer examples of developmental exposure to various environmental pollutants
shown to induce epigenetic changes and neurodevelopmental deficits and diseases.
Interactions between toxic and environmental exposures and genetic, nutritional and social
factors that can exacerbate effects are then described. Finally, two case studies are provided
to illustrate the strengths and limitations of available epigenetic data and the potential of
using epigenetic markers to forge causal links between toxic environmental exposures and
neurodevelopmental outcomes. In this section, we summarize evidence that epigenetic
alterations in endocrine and immune pathways are directly involved in the adverse
neurodevelopmental effects associated with in utero exposure to the two classic endocrine
disruptors, polycyclic aromatic hydrocarbons (PAHs) and bisphenol A (BPA).
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2. The role of epigenetics in early development and disease: the prenatal/
fetal window of susceptibility

Epigenetics is the study of heritable changes in gene expression or phenotype occurring
without changes in DNA sequence [1]. For general reviews, see [2–4]. The genetic
information in DNA has been likened to the notes of an orchestral score and epigenetics to
the conductor who interprets the score and controls the dynamics of the symphonic
performance [5]. While new epigenetic mechanisms are being uncovered, the best
characterized are DNA methylation, changes in histone proteins around which DNA is
packaged, and expression of non-coding RNAs (see [6–9] for review). Interactions between
these epigenetic mechanisms generate diversity of cell types during development and then
maintain the expression profiles of the different cell types throughout life [6]. The term
“environmental epigenomics” reflects the constant interplay between the environment,
which includes both endogenous (such as hormone levels or immune status) and exogenous
factors (such as nutritional and chemical exposures), and the epigenome. The best
characterized epigenetic events in early mammalian development are genomic imprinting
(the silencing of one parental allele at a single locus, which occurs in the parental germ stem
cells) resulting in monoallelic gene expression and x-chromosome inactivation (silencing of
one of the two X chromosomes in mammalian females) occurring in early embryogenesis
(reviewed in [6]). Dysregulation of imprinted genes during early development is involved in
disorders such as Angelman’s, Prader-Willi and Beckwith-Wiederman Syndromes, certain
cancers, and possibly in autism and other neurological syndromes [10].

Gene expression can be regulated by epigenetic processes. Two examples include
coordinated epigenetic modifications of chromatin by DNA methylation and post-
translational covalent modifications of histone proteins [4,11,12] and micro-RNA-induced
suppression of gene expression during development [13]. DNA methylation is the most
extensively investigated of the epigenetic mechanisms and involves the addition of a methyl
group at the carbon-5 position of cytosine in CpG dinucleotides. While CpG dinucleotides
are underrepresented in mammalian genomes overall, and usually exist in a methylated state,
proximal gene promoter regions often overlap with CpG rich regions known as “CpG
islands” that are typically unmethylated. In these regions, cytosine methylation serves a
regulatory function [14]. By extending into the major groove of DNA, the methyl group of
5-methylcytosine (5-mC) interferes with transcription binding proteins, inhibiting
transcription, and effectively silencing the gene [7]. More importantly, DNA methylation
acts as a docking site for methyl-DNA binding proteins that recruit other chromatin
remodeling proteins. The importance of methylation changes at non CpG islands is now
being recognized [15]. Both hypermethylation and hypomethylation of DNA can result from
exposure to exogenous chemicals. For some genes, even a small change in the level of DNA
methylation at a few CpG sites might subtly alter gene expression and increase disease risk
[16,17].

The epigenome is susceptible to dysregulation throughout life; however, it is thought to be
most vulnerable to environmental factors during embryogenesis, which is a period of rapid
cell division and epigenetic remodeling [16,18]. Following a complex choreography,
following fertilization, DNA methylation patterns are largely erased and established early in
mammalian development (reviewed in [7,19]). Fig. 1 illustrates the normal timetable for
reprogramming of methylation of non-imprinted and imprinted genes during early
development, beginning with the primordial germ cells (PGCs) of each of the parents (F0)
through gametogenesis, fertilization, the embryonic period of the offspring (F1), followed by
the maintenance of methylation in somatic cells and the development of germ cells that will
become F2 [7,20,21]. These dynamic stages represent windows of potential vulnerability to
epigenetic dysregulation [7]. While the maintenance of imprinted genes throughout the
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preimplantation period is essential for normal embryonic development, demethylation of
other genes is needed to make the genome broadly available to the developing embryo.
Thus, after fertilization and prior to implantation, the embryo undergoes genome-wide
demethylation, with the exception of imprinted genes (which retain the methylation profile
of the parent-of-origin) and some retrotransposable elements [16]. Beginning when the
embryo is in the blastocyst stage (starting day 5 post fertilization for humans) and before
implantation into the uterine wall (about 7 days post fertilization), methylation patterns in
non-imprinted genes are reestablished de novo by the DNA methyltransferases DNMT3a
and DNMT3b and their cofactor DNMT3L [20,22]. DNA methylation patterns are
maintained by DNMT1, which restores full methylation to hemi-methylated CpG sites
following DNA replication; this maintenance is critical for normal development [20,23].

As noted, imprinted genes do not undergo genome-wide demethylation before implantation
but maintain their methylation patterns throughout this period of reprogramming, allowing
for the inheritance of parental-specific monoallelic expression in somatic tissues throughout
adulthood [20]. Primordial germ cells (PGC) (the precursor cells that develop into
spermatogonia and oogonia) have differential methylation by parent-of-origin at imprinted
genes until they enter the genital ridge, when their DNA undergoes global demethylation of
both imprinted and non-imprinted genes [24,21]. Remethylation of imprinted genes occurs
in a sex-specific manner during gametogenesis (the division of gametocytes into haploid
sperm and oocytes by meiosis) [19,20]. Imprints are established perinatally in the male germ
line and are maintained throughout the mitotic divisions of the spermatogonial stem cells
[20,21,48]. In the female germline, imprints are established during oocyte growth while they
are arrested during the meiotic prophase I and are erased soon thereafter in the primordial
germ cells of the next generation [25,26]. It can be seen from this brief summary that, prior
to complete cell differentiation and the persistence of a stable epigenetic pattern, there is an
opportunity for prenatal endogenous and exogenous exposures to alter the elaborate DNA
methylation patterning required for normal tissue development [18]. Imprinted genes may be
a particularly susceptible target for environmentally induced epigenetic effects [27]. The
early developmental period is thought to be the most susceptible to epigenetic insults
because the DNA synthesis rate is high and the elaborate DNA methylation patterning and
chromatin structure required for normal tissue development is established at that time [28].
However, after birth, somatic cell methylation patterns continue to adjust in response to
developmental and environmental factors [2,3,29].

In 1992, Barker and colleagues laid the groundwork for the “fetal basis of adult disease”
(FEBAD) hypothesis, postulating that, because organs undergo developmental programming
in utero that predetermines subsequent physiologic and metabolic adaptation during adult
life, prenatal insults such as nutritional deprivation or environmental exposures that
disturbed developmental programming could lead to a higher risk of disease in adulthood.
They showed that abdominal fatness in adult men, an indicator of increased risk of
cardiovascular disease and diabetes independent of body mass, was associated with retarded
fetal growth, suggesting a persisting response to adverse conditions in fetal life [30]. Since
1992, the evidence has grown that developmental plasticity allows the fetus to make
anticipatory responses to the external environment by altering the course of cellular and
organ differentiation in utero in order to gain adaptive advantage for later life challenges
[31,32]. However, a mismatch between the prenatal and the postnatal environment or
synthetic environmental agents that mimic internal or natural cues can result in disease. The
FEBAD hypothesis has been supported by evidence that fetal nutrient availability, other
intrauterine factors, and external environmental factors can cause serious consequences in
later life by permanently reprogramming the functional capacity of organs. Classical
examples include the association of low or lower birth weight with increased risk of adult
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onset cardiovascular disease [31], type 2 diabetes mellitus, osteoporosis [33], depressive
disorders [34] and certain cancers [35].

There is compelling evidence that epigenetic dysregulation underlies the observed
associations between adult disease and adverse environmental/nutritional conditions early in
development. For example, Heijmans and colleagues reported that individuals who were
periconceptionally exposed to famine during the Dutch Hunger Winter in 1944–1945 had,
six decades later, significantly less DNA methylation of the imprinted insulin-like growth
factor II (IGF2) gene compared to their unexposed same-sex siblings [36]. IGF2 is a key
factor in human growth and development and is maternally imprinted. Diseases that have
been associated with early gestational exposure to famine include schizophrenia and
coronary heart disease – diseases in which IGF2 may play a role.

In addition, a series of elegant studies in mice has shown that prenatal exposure to dietary
methyl-donor supplementation with folic acid, Vitamin B12, choline, and betaine not only
increased DNA methylation at specific CpG sites but also altered subsequent phenotypes
such as coat color and obesity in the Avy mouse model (reviewed in [7]). The fact that CpG
sites were altered in tissues derived from the ectodermal, endodermal, and mesodermal
lineages indicates that methylation profiles were changed early in embryonic development
[7,18,37].

Another often-cited illustration of the importance of methylation changes attributable to
environmental factors, albeit one involving neonatal exposure, is the work of Weaver et al.
[38,39] showing that maternal stress and subsequent nurturing behaviors alter the
epigenotype in rodent offspring, affecting their glucocorticoid receptor (GR) expression and
behavior. The epigenetic changes could be reversed in adulthood by administering
methionine or histone deacetylatase (HDAC) inhibitor. These epigenetic effects are not
germline inherited but are passed on to the offspring directly from the mother through her
behavior during the first week of postnatal life [40,29]. In a related study, newborns of
mothers who had symptoms of depression during pregnancy had increased methylation of
the glucocorticoid receptor gene in umbilical cord blood cells and the infants had elevated
salivary cortisol concentrations at three month of age [41].

Bagot and Meaney conclude that epigenetic remodeling can occur both during early and
later stages of development in response to environmental events that regulate development
and function, with increased risk for psychopathology [42]. Most studies have focused on
the influence of the maternal environment and maternal-infant interactions. However, recent
evidence suggests that paternal factors (nutritional, toxicological, age, and phenotypic
variation) can affect offspring and in some cases grandoffspring [43].

With respect to the lifecourse, a well studied example of an exogenous in utero exposure
affecting adult disease is diethylstilbesterol (DES), the estrogenic pharmaceutical agent.
This non-genotoxic, epigenetic carcinogen induced reproductive disorders and cancers in
daughters exposed in utero and even in their granddaughters (reviewed in [44]). DES has
been shown to alter gene methylation in mice exposed in utero suggesting that epigenetic
mechanisms are involved [45].

An indirect mechanism by which environmental toxicants may increase propensity to adult
disease is through the induction of changes in gene expression in response to IUGR (see
review by Joss-Moore and Lane [4,12]. Among the epigenetic environmental exposures that
have been associated with IUGR are air pollution [46–50], organochlorine pesticides [51],
and possibly trihalomethanes or other water disinfection byproducts [51,52]. IUGR affects
organ systems by interrupting developmental processes such as apoptosis or altering levels
of homeostatic regulation factors [4,12]. Epigenetic dysregulation is at least partially
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responsible for these effects, as IUGR can induce changes in gene expression accompanied
by changes in levels and activities of chromatin modifying enzymes such as DNMT1 and
HDAC1, global DNA hypomethylation, and increased histone H3 acetylation [53,54].
IUGR-related adult morbidities include metabolic disorders (dyslipidemia, fatty liver,
obesity) and non-metabolic disorders (chronic lung disease, neurodevelopmental disorders)
[4,12]. Recent studies suggest that mechanisms altering epigenetics help drive disease
processes. For example, transdifferentiation processes have been implicated in diabetes
[55,56].

3. Prenatal exposure to environmental pollutants, related health effects,
and epigenetic dysregulation

As reviewed by Baccarelli and Bollati [57], studies in adults have demonstrated epigenetic
changes related to environmental exposure to metals, air pollution, benzene and persistent
organic pollutants. For example, in a study of adult coke oven workers and controls, global
and IL-6 hypermethylation and p53 hypomethylation were associated with PAH exposure
[58]. In workers exposed to the leukemogen, benzene, epigenomic data showed effects of
benzene on DNA methylation of a number of specific genes [59].

With respect to prenatal exposures, there is an increasing body of evidence that diverse
pollutants alter epigenetic programming and disease risk in the F1 and even F2 and F3
generations. These include arsenic, tobacco smoke, air pollutants, and endocrine disrupting
chemicals.

3.1. Arsenic
The long-term consequences of in utero and early childhood arsenic exposure in human
populations include increased mortality from lung cancer and bronchiectasis in young
adulthood [60]. In rodent models, in utero arsenic exposure resulted in a sharp increase in
hepatocellular carcinomas in exposed offspring and also changed the expression of genes
involved in cell proliferation, stress and cell-to-cell communication. These gene expression
changes were evident when the offspring reached adulthood [61].

Extending this experimental work, Fry and colleagues [61] have reported that, among 32
newborns born to arsenic-exposed and arsenic unexposed mothers in Thailand, gene
expression changes in cord blood were highly predictive of in utero arsenic exposure.
Arsenic exposure was associated with robust activation of an integrated network of
pathways involving the gene NF-κB (nuclear factor kappa-light-chain-enhancer of activated
B cells), inflammation, cell proliferation, stress, and apoptosis. This finding is biologically
plausible because NF-κB regulates a large number of genes critical for apoptosis as well as
inflammation-driven tumor progression.

Few studies have directly linked epigenetic or gene expression changes induced by arsenic
to adverse health outcomes in a human population and none has examined the link between
prenatal arsenic exposure, methylation, and disease. However, a population-based study of
human bladder cancer found that arsenic exposure, measured as toenail arsenic, was
associated with promoter methylation of the candidate tumor suppressor gene RASSF1A in
human bladder tumors. These results suggest that bladder carcinogens induce epigenetic
alterations important in bladder cancer causation [62]. Another study of adults in
Bangladesh found that arsenic exposure was associated with increased genomic methylation
of leukocyte DNA but that genomic hypomethylation of leukocyte DNA was associated
with increased risk for arsenic-induced skin lesions [63]. In a nested case-control study of
274 cases who developed lesions two years after recruitment and 274 controls matched to
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cases for sex, age, and water arsenic, the odds ratio for development of skin lesions among
participants with hypomethylated leukocyte DNA at recruitment was 1.8 (95% confidence
intervals (CIs)).

3.2. Tobacco smoke
Prenatal exposure to active or passive maternal tobacco smoking has been associated in
some studies with lower pulmonary function, increased risk of asthma [64], cancer [65,66],
obesity [67,68], type II diabetes [69], and low birth weight which is associated with
coronary heart disease, obesity and type II diabetes [70].

Alterations in DNA methylation patterns in genomic DNA from buccal cells of children
were associated with in utero exposure to maternal smoking such that prenatally exposed
children had significantly lower levels of global methylation as well as increased
methylation of several genes compared to children without exposure [71]. Adjustment for
postnatal ETS exposure did not appreciably change the results. The finding of an association
between prenatal tobacco smoke exposure and global hypomethylation was observed for
ALuY68 but not LINE 1, possibly reflecting their different control mechanisms and
transcription patterns in response to cellular stressors [72]. In contrast, Terry et al. [73]
reported that prenatal exposure to maternal tobacco smoking was associated with higher
levels of global methylation in mononuclear blood cells from adult women. The
inconsistencies may reflect the different assays, tissues, and age of subjects. If confirmed,
the finding of global hypomethylation in children exposed prenatally to tobacco smoke is of
concern since the trend of global hypomethylation with region or gene-specific
hypermethylation has been observed previously in cancers [57,74]. Global hypomethylation
is thought to result in chromosomal instability and increased mutational events, while
promoter hypermethylation can silence expression of tumor suppressor genes [75].

In addition to the observed effects of F0 exposure during embryonic development of the F1
generation, environmental exposures during gestation have been shown to influence disease
risk in the F2 generation. For example, grandmaternal smoking during the mother’s fetal
period was associated with a greater risk of asthma in the grandchildren (F2 generation),
independent of maternal smoking [76]. Risk was further increased if both the grandmother
and the mother smoked during pregnancy. Epigenetic mechanisms have been proposed for
this phenomenon [76]. Another example of F0 exposure affecting the F2 generation is
provided by experimental studies of DES and uterine cancer [77–79].

3.3. Air pollution/PAHs
Benzo[a]pyrene (BaP) and other PAHs exert both genotoxicity (inducing DNA damage,
DNA adducts, and mutations) and epigenetic toxicity. Certain PAHs resemble steroid
hormones and are considered endocrine disruptors. They are lipid soluble, accumulate in
adipose tissue, and are transferred across the placenta and the fetal blood brain barrier
(reviewed in [80,81]). In the Columbia Center for Children’s Environmental Health
(CCCEH) New York City (NYC) cohort, prenatal exposure to PAHs produced by burning of
fossil fuel and other organic material has been associated with multiple adverse effects
including fetal growth reduction [82] and IUGR [46] in African Americans, as well as
developmental delay [83], reduced IQ [84], and behavioral disorders (in preparation) in both
African Americans and Dominicans. In a parallel cohort study of Polish Caucasians, adverse
effects were also observed on fetal growth [85], cognitive development [86], and behavioral
disorders.

In a subset of the NYC cohort, prenatal PAH exposure was significantly associated with
genomic hypomethylation in umbilical cord white blood cell (UCWBC) DNA. Newborns in
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the highest prenatal PAH exposure group had an average decrease of 0.42 ng/100 mg total
DNA compared to newborns in the lowest prenatal PAH exposure group (p < 0.01) [87]. In
the same 159 cohort children, the persistence of global methylation pattern was evaluated by
comparing methylation measured in cord blood to methylation measured in blood collected
at age 3. Global DNA methylation levels in cord and 3-year blood were significantly
correlated (r = 0.82, p < 0.01), suggesting that changes in cord blood epigenetic markers due
to prenatal PAH exposure may be stable alterations that persist in blood through early
childhood [87].

In order to explore the association between prenatal PAH exposure, epigenetic changes and
childhood asthma, methylation sensitive restriction fingerprinting was used to analyze
umbilical cord white blood cell (UCWBC) DNA of 20 CCCEH cohort children [88]. Over
30 DNA sequences were identified whose methylation status was dependent on the level of
maternal PAH exposure. Six of the 30 DNA sequences initially identified were found to be
homologous to known genes having one or more 5′-CpG island(s) (5′-CGI). Of these, acyl-
CoA synthetase long-chain family member 3 (ACSL3), which belongs to the acyl-CoA
synthetase long chain (ACSL) family of genes which encodes key enzymes in fatty acid
metabolism, exhibited the highest concordance between the extent of methylation of its 5′-
CGI in UCWBCs. The level of gene expression in matched fetal placental tissues in the
initial 20 cohort children. In a larger sample of 56 cohort children, hypermethylation of the
ACSL3 5′-CGI was found to be significantly associated with maternal airborne PAH
exposure exceeding 2.41 ng/m3 (OR = 13.8; p < 0.001) and with a parental report of asthma
symptoms in children prior to age 5 (OR = 3.9; p < 0.05). Hypermethylation of this gene in
T helper cells or lung tissues is expected to diminish fatty acid utilization and beta-
oxidation-energy production, and possibly influence membrane phospholipid composition.
Thus, if validated, methylated ACSL3 5′ CGI in UCWBC DNA may be a surrogate endpoint
for transplacental PAH exposure and/or a potential biomarker for environmentally related
asthma and may provide mechanistic support for the FEBAD hypothesis.

3.4. Phthalates
The phthalates are ubiquitous industrial plasticizers and include agents such as di(2-
ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and butyl benzyl phthalate (BBP),
which are classified as endocrine disruptors because of their anti-androgenic or pro-
estrogenic effects [89,90]. They are used to soften polyvinyl chloride and are found in
adhesives and glues, agricultural adjuvants, building materials, personal care products,
medical devices, detergents, packaging, children’s toys, pharmaceuticals, food products, and
textiles [91]. Exposure to phthalates can occur through diet, inhalation, or dermal exposure.

While not all studies have been consistent, prenatal exposure to phthalates has been
associated with shortened gestational age [92,93] and with a number of adverse reproductive
and developmental effects including decreased anogenital distance among newborn boys
[90], undescended testis (exposure to a combination of phthalates and anti-androgenic
pesticides) [94], and adverse neonatal neurodevelopment among girls [95]. Phthalate
exposure has also been associated with elevated body mass index (BMI) during the first
three years of life [96].

Phthalates are epigenetically toxic. In MCF7 breast cancer cells, treatment with BBP led to
the demethylation of estrogen receptor (ER) alpha promoter-associated CpG islands,
suggesting that altered ER mRNA expression by BBP might be related to aberrant DNA
methylation in the promoter region of the receptor [89]. Exposure to DEHP during sexual
differentiation of rats caused male reproductive tract malformations and abnormal
expression of insulin-like growth factor-(IGF-1), c-kit ligand (KITL), and leukemia

Perera and Herbstman Page 7

Reprod Toxicol. Author manuscript; available in PMC 2011 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inhibitory factor (LIF), genes that may contribute to the reproductive toxicity of phthalates
[97].

3.5. Bisphenol A (BPA)
BPA is also considered an endocrine disruptor and can accumulate in adipose tissue [98].
BPA is used in the production of plastics and resins which are used in food and drink
containers, flame retardants, dental sealants, and in the recycling of thermal paper. Almost
all exposure, including that to children, has been thought to occur through diet [99,100].
Recent studies, however, have suggested that non-dietary sources may be important as well
[101,102]. In experimental models BPA has been associated with adverse reproductive
effects in females [103] and with an increased susceptibility to cancer [104].

Developmental (neonatal) exposure of rats to BPA resulted in increased incidence of
prostate intraepithelial neoplasia (PIN) when followed by prolonged estradiol and
testosterone exposure in adulthood [35]. The prostate tissues showed consistent methylation
changes as a result of neonatal estrogen or BPA exposures. The phosphodiesterase Type 4
variant 4 (PDE4D4) gene showed hypomethylation of the 5′CpG island, resulting in
increased PDE4D4 expression in the adult prostate [105]. These findings jointly suggest that
the prostate epigenome is permanently altered by early exposure to BPA and that the
epigenetic alteration may lead to heightened risk of prostate cancer with aging.

4. Case studies: a proposed epigenetic mechanism for the
neurodevelopmental effects of in utero exposure to PAHs and BPA

The prior section has reviewed the evidence that diverse prenatal environmental exposures
increase risk of various diseases in the offspring and in some cases their grandchildren, that
they also alter the epigenome, and that epigenetic dysregulation may mediate their adverse
health effects. In contrast, in the following section we present two case studies in which we
propose that epigenetic alterations in endocrine and immune pathways are directly involved
in the neurodevelopmental effects associated with in utero exposure to PAHs and BPA. This
section illustrates both the limitations of available data and the potential of using epigenetic
markers to forge links in the causal chain for a particular exposure and a specific health
outcome.

PAHs have been shown to be neurotoxic and affect gene expression in humans. Laboratory
studies exposing experimental animals to PAHs during the prenatal and neonatal periods
have reported neurodevelopmental and behavioral effects including depression-like
symptoms and memory impairment in the absence of other overt toxicological effects [106–
111]; others have shown that exposure affects neurotransmitter levels and gene expression
patterns in the brain [80,112–114]. For example, prenatal treatment of rats with BaP
impaired memory and ability to learn, consistent with alterations in the expression profile of
glutamate receptor (GluR) subunits, which are key genes involved in long-term potentiation
(LTP), considered the cellular correlate of learning and memory [81,111].

Many studies have shown that PAHs such as BaP are endocrine disruptors, affecting gene
expression in hormonal regulatory pathways important in early brain development. Gene
targets include the aryl hydrocarbon receptor (AhR) [115–117], CYP1A1 and CYP1B1 and
CYP19A1; these genes are expressed in the fetal brain and peripheral lymphocytes [118–
123]. In experimental studies, BaP caused alterations in levels of noradrenaline, dopamine,
and serotonin and/or their metabolites in discrete brain regions [112–114]. In gestationally
exposed rats, BaP caused significant reductions in expression of the N-methyl-D-aspartic
acid (NMDA) glutamate receptor subunit NMDAR2B [81,111,124], and reduced LTP across
the perforant path granular cells synapses in the hippocampus [125]. These data indicate that
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BaP and other PAHs disrupt the glutamate pathway and the dopaminergic and serotonergic
systems, consistent with observed disturbances of learning and emotional behavior
[113,125].

In addition, PAHs are immunotoxic contaminants known to affect expression of pro-
inflammatory cytokines including interleukin-1beta, tumor necrosis factor-alpha (TNFα)
IFN-γ and the chemokine CCL1 and [126,127]. Cytokines are also produced by CNS tissue
and peripheral leukocytes [128]. These cytokines are among those most often implicated in
neurodevelopment [129–131].

Finally, exposure to BaP upregulated COX-2, a key enzyme involved in inflammation and
associated with reactive oxygen species (ROS) production, in rat astrocytes [132,133] in
human cells and rats exposed to BaP or its main metabolite BPDE [133–136]. Residents of
cities with severe air pollution had significantly higher expression of COX-2 in the frontal
cortex and hippocampus compared to controls at autopsy [137].

Fewer studies have evaluated methylation changes due to PAHs than have looked at gene
regulation or expression. However, in the CCCEH cohort study described above, a number
of genes in addition to ACSL3 were found to be differentially methylated in UCWBC of
newborns with high vs. low prenatal PAH exposure [88]. Several are known to be expressed
in leukocytes and brain cells and have functions related to inflammatory and or immune
pathways. They include CCL17 (a chemokine also known as TARC) that selectively induces
migration of Th2 lymphocytes [138], which is expressed constitutively in thymus and in
phytohemagglutinin-stimulated peripheral blood mononuclear cells, and has been found to
be overexpressed in autistic brains [139].

The experimental studies described above have drawn an inferential link between PAH-
related epigenetic alterations and neurodevelopmental effects, suggesting that alterations in
methylation/gene expression mediate the neurodevelopmental effects of PAHs. For example,
the observed neurodevelopmental effects of PAHs on learning and memory in humans [83]
and the observation that prenatal treatment of rats with BaP impaired their ability to learn
[111] are consistent with the observed disruptions of the glutamate pathway [111].

BPA is another endocrine disrupting chemical capable of exerting developmental effects. A
recent epidemiological study has linked prenatal exposure to BPA with subtle, gender-
specific alterations in behavior of 2-year olds [140]. Experimental evidence indicates that
gestational exposure to environmentally relevant doses of BPA abrogates sexual
dimorphism in brain structure and behavior and disrupts cognition, social behaviors, and
other aspects of brain function [141–143]. Perinatal exposure to BPA altered sex differences
in anxiety and depression-like responses in rodents [144–148]. In addition, male mouse
offspring of dams treated from mating through weaning with low dose BPA exhibited
impairment in memory [149]. Hyperactivity in male mice has also been demonstrated in
response to perinatal exposure to BPA (females were not examined) [150]. Importantly,
these behavioral changes are induced through low dose exposures to BPA in these
experimental models. BPA treatment of pregnant female mice led to disruption in
neocortical patterning in offspring during adulthood, possibly by accelerating neuronal
differentiation and migration [151], and caused changes in gene expression in the fetal
forebrain [152].

As is the case for PAHs, most mechanistic research on BPA, an estrogen-mimicking
chemical, has focused on gene expression, rather than DNA methylation. BPA has been
shown to interact with estrogen signaling pathways through binding to the estrogen
receptors ERα and ERβ [153–155], and is also believed to interfere with non-classical
estrogen signaling pathways at very low concentrations [156–158]. Studies in mice have
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shown that perinatal exposure to BPA can disrupt estrogen signaling in the offspring, with
changes in gene expression at low doses [159]. Gestational exposure to BPA caused
permanent upregulation of ERβ mRNA in the preoptic area of the hypothalamus in male rat
offspring [160] and increased ERα and ERβ levels in the dorsal raphe nucleus of male
mouse offspring of mice [161].

Prenatal BPA exposure has also been shown to interfere with other endocrine pathways.
Prenatal BPA exposure dramatically increased expression levels of AhR in mouse
embryonic cerebra, cerebella, and gonads, showing a U-shaped dose–response curve with
extremely high response at the lowest dose tested [162]. Prenatal exposure to BPA also
interfered with thyroid hormone, required for normal fetal and neonatal brain development
[163–165], and increased expression of RC3/neurogranin in the dentate gyrus brain region,
suggesting that BPA differentially affects the beta-thyroid receptor (TRβ) vs. the alpha-TR
(TRα) [166] and changes the temporal expression patterns of TRα and TRβ [152]. Cell-based
assays suggest that BPA blocks expression of TRβ [167,168].

Prenatal exposure to BPA affects immune cells and the expression of genes involved in
inflammation such as IL-4 and INFγ [169,170]. BPA also affects methylation of genes
involved in several immune pathways. For example, gestational exposure of rats to BPA
caused differential methylation of Cebpα [171], which is involved in macrophage
differentiation, cytokine signaling, microglial activation, and neuronal signaling [172–175].
As noted above, studies by Ho et al. found that PDE4D (involved in macrophage
differentiation, neutrophil recruitment in inflammation, responses to oxidative stress, and
possibly in regulation of dopaminergic neurotransmission [176–179]) was hypomethylated
in the prostates of rats treated neonatally with BPA and also showed increased expression
[35]. All of the genes mentioned above are known or believed to be expressed in both the
brain and the blood cells.

A number of studies have attempted to link BPA-related changes in gene expression to
neurodevelopmental outcomes. In utero treatment of mice with BPA eliminated sex
differences in the size of the anteroventral periventricular preoptic (AVPV) area,
significantly reduced the number of TH (tyrosine hydroxylase) positive neurons in the
female AVPV, and abrogated sex differences in the number of TH-positive neurons [143].
In the same study, BPA reduced sexual dimorphism in anxiety-related behaviors in the
open-field test. Finally, BPA treatment from mating through weaning both increased levels
of neurotransmitter-producing choline acetyltransferase in the hippocampus of male
offspring and affected performance on the step-through test, indicating memory impairment
as a consequence of BPA exposure [149].

As we have seen, genes in inflammatory/immune and endocrine pathways are targets for
PAHs and BPA in the context of neurodevelopmental effects. As discussed by Tian [180],
genes involved in inflammation and immune response may be common targets for diverse
epigenetic environmental agents; and multiple disease endpoints may be affected. Examples
include AhR, a pleiotropic ligand-activated transcription factor whose ligands include many
natural and synthetic compounds (such as dioxin and PAHs) and NF-κB, a pleiotropic factor
that regulates many physiological and pathophysiological processes. Interactions between
AhR and NF-κB pathways are potentially important mechanisms for chemical-induced
immune dysfunctions, carcinogenesis, alteration of xenobiotic/pollutant metabolism and
other pathological responses induced by environmental insults.

5. Transgenerational effects of prenatal exposures
As we have seen, the role of prenatally acquired somatic epigenetic alterations in disease has
been quite widely studied, mostly in experimental models. Less well characterized are
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epigenetic events that are inherited through the germline from parent to child and
transmitted to subsequent generations [181].

There is growing evidence that environmental variations experienced by both fathers and
mothers may lead to phenotypic variation in the development and behavior of offspring
resulting from transmission through the germline [182]. Transmission can result either from
altered programming within germ cells of the epigenome of the retrotransposons and
imprinted genes or through altered expression of RNA within gametes. “Transgenerational
epigenetic inheritance” refers to the transmission of a biological trait to subsequent
generations via epigenetic modifications in the germline [7]. As elaborated by Jirtle and
Skinner [7], in order to consider transgenerational effects on the epigenome to be a plausible
mechanism for a disease phenotype, the epigenetic changes and the disease phenotype must
be observed in the F3 generation. This is because gestational exposure of an F0 female
directly exposes both the F1 embryo and the F2 germline. Therefore, phenotypes in the F1
and F2 generations may be due to their direct exposure to the environmental factor rather
then germline transmission (see Fig. 2).

While multi-generational effects involving direct exposure have been observed for a number
of agents [183], there are fewer examples of transgenerational phenotypes occurring in the
absence of direct exposure. The best developed example of transgenerational effects of
environmental chemicals comes from the classic experiment by Anway et al. [184,185].
These investigators exposed male rats to vinclozolin (an antiandrogenic fungicide) or
methoxychlor (an estrogenic organochlorine insecticide) during the period of gonadal sex
determination. Exposure resulted in reduced sperm count and viability and increased rates of
infertility in adulthood. This loss of fertility was perpetuated through the male germline for
four generations. Investigation of the mechanism for the transgenerational phenotype found
that endocrine disruptors reprogrammed the male germline during development and induced
heritable methylation changes that were stably transmitted through the male germline [186].
Another example is perinatal exposure to BPA shown at environmentally relevant doses of
BPA to affect the male germ line, leading to impairment in the fertility of male offspring
over three generations [187]. A study of TCDD exposure has demonstrated reduced fertility
and an increased incidence of premature birth in F1 mice exposed in utero to this chemical
as well as in three subsequent generations [188].

6. Emerging evidence that nutritional, genetic and psychosocial factors
may influence DNA methylation by environmental toxicants

Experimental animal studies have shown that the epigenetic reprogramming by behavioral
factors is reversible by nutritional factors. For example, Weaver and colleagues showed that
the programming of the GR exon 1 promoter associated with low grooming maternal care,
as well as the resulting stress response and behavioral phenotypes, were reversible by
administration of a methyl donor precursor or a histone deacetylase (HDAC) inhibitor [189].
Other investigators have shown that the effects of maternal exposure to BPA on the
offspring, mediated in part by hypomethylation of DNA, are prevented by maternal dietary
supplementation [28].

With respect to genetic susceptibility, as noted above, Breton and colleagues observed a
significant interaction between the GSTM null genotype of the child and the prenatal
exposure to tobacco smoke on global methylation in the child [71]. Foley et al. [16] have
reviewed other genetic factors that directly affect DNA methylation. These include the C-to-
T substitution at nucleotide 677 of the methylene tetrahydro-folate reductase (MTHFR)
gene: TT homozygous individuals have lower levels of DNA methylation than CC
homozygous individuals. In addition, variants of the DNMT gene family discussed earlier
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have been associated with diseases including cancer [190]. As another example, a specific
variant (C > T) in the O-6-methylquanine-DNA transferase (MGMT) tumor suppressor gene
has been associated with O-6-methylguanine-DNA methyltransferase promoter methylation
and gene silencing. Wright [191] has reviewed the evidence that psychosocial stressors and
physical environmental toxicants play a joint (synergistic) role in disrupting immune and
endocrine pathways involved in respiratory and cognitive development and function. She
notes that oxidative stress pathways that may influence health are disrupted by both
psychological stressors and environmental pollutants such as tobacco smoke and air
pollution, all of which generate reactive oxygen species. Further, by causing dysregulatory
behavioral states such as depression and anxiety, psychosocial stressors may produce long-
lasting effects on shared physiologic processes and thereby increase risk from pollutant
exposures [192]. Wright suggests that both factors may be acting through early life
reprogramming of the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic
nervous system which are particularly susceptible to both stress and physical environmental
toxicants.

Examples of joint effects of the social and physical environment include the interaction
between traffic-related air pollution (NO2) and elevated social stress on risk for childhood
asthma, whereby effects were seen only in children with both exposures [193], and the
interaction between traffic related pollution and stress on increased asthma symptoms and
inflammatory markers in adolescent asthmatics [194]. Another example of joint effects
concerns neurodevelopment and cognition of young children in the CCCEH cohort, in which
prenatal material hardship modified the response to maternal ETS exposure during
pregnancy, as evidenced by reduced scores on the Bayley Scales of mental development at
age 2 [195]. Because social and physical environmental toxicants tend to cluster in the most
socially disadvantaged populations, understanding of these complex interdependencies may
help explain and ultimately prevent health disparities [196]. Both animal and human studies
have also shown that environmental enrichment can reverse the effects of early stress [196].

7. Implications for prevention of childhood, adult and multigenerational
disease: conclusions

Most of the research to date has focused on the critical role of epigenetics in mediating the
effects of social experience and nutrition [197,198]. However, there is also compelling
human and experimental evidence that prenatal environmental exposures to endocrine
disruptors and other environmental xenobiotics, acting alone or in combination with genetic,
nutritional, or psychosocial factors, adversely affect human development and health in
childhood and possibly over the lifecourse, and that a primary mechanism is epigenetic
dysregulation. Because epigenetics programming determines the state of expression of
genes, epigenetic differences could have the same consequences as genetic polymorphisms
[197]. Moreover, there is experimental evidence that exposures during the prenatal window
can influence disease risk transgenerationally through epimutations in the germline. The
research reviewed here has potential implications for risk assessment; although more data
are needed on individual susceptibility to epigenetic alterations and their persistence before
this information can be used in formal risk assessments.

Reviewers have tended to emphasize the potential reversibility of epigenetic dysregulation
and related phenotypes as encouragement for pharmacological and cognitive-intervention
[7,199]. Often cited in this regard are studies with animal models showing that
supplementation with folic acid during pregnancy or after weaning alters the phenotype and
epigenotype induced by maternal dietary deficiency during gestation [200]. A cautionary
note is that pharmacologic or dietary interventions would require a gene-specific approach
based on a complete understanding of the epigenetic events involved in fetal adaptation to
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adverse or suboptional conditions [201]. Global epigenetic modifying agents such as histone
deacetylase inhibitors would pose potential risks by modifying epigenetics of multiple
genes, with unpredictable consequences. However, the data strongly encourage preventive
policies to reduce early life exposure to epigenetically toxic agents as a priority in public
health. Such policies could have both immediate and long-term benefits for human health by
preventing disease and developmental disorders in childhood, over the lifecourse, and even
in future generations [202].
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Fig. 1.
There are multiple periods during which environmental exposures could affect the F1
individual’s methylation status, potentially affecting the F1 phenotype. The first window is
during F0 (parental) germ cell development when methylation is reprogrammed following
imprint erasure in the father’s sperm (solid blue line) and the mother’s egg (solid red line)
The second window is post-conception, during F1 embryonic development, when all but
imprinted genes are demethylated, with the male germ line (dashed blue line) demethylating
more quickly, followed by the female germ line (dashed red line). Imprinted genes (purple
line) maintain their methylation marks throughout this reprogramming, allowing for the
inheritance of parental-specific monoallelic expression in somatic tissues throughout
adulthood [203]. All of the non-imprinted genes are subsequently remethylated once the
embryo reaches the early blastocyst stage. During the gonadal sex determination of the F1
embryo, primordial germ cells undergo epigenetic reprogramming, where parental
imprinting is erased, as the germ cells of the F1 individual mature (solid light blue or pink
line). To determine whether epigenetic alterations are transmitted transgenerationally, the F3
generation must be studied (see text and Fig. 2) [7]. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 2.
Three generations at once are exposed to the some environmental conditions (diet, toxics,
hormones, etc.). In order to provide a convincing case for epigenetic inheritance, an
epigenetic change must be observed in the 4th generation.
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